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ABSTRACT

A formal framework for distribution-free concept known as Valiant's learning
framework has generated a great deal of interest. A fundamental result regarding
this framework characterizes those concept classes which are learnable in terms of
their Vapnik-Chervonenkis (VC) dimension. More recently, learnability with respect
to a fixed probability distribution (a variant of the original distribution-free frame-
work) has been studied and an analogous result characterizing learnability in this
case was shown. Also a conjecture regarding learnability for a class of distributions
was stated.

In this report, we first point out that the condition for learnability for a fixed
distribution is equivalent to the notion of finite metric entropy (which has been
studied in other contexts). Some relationships between the VC dimension of a
concept class and its metric entropy with respect to various distributions are then
discussed. Finally, we prove some partial results regarding learnability for a class
of distributions, which provide some indication of when the set of learnable concept
classes is enlarged by requiring learnability for only a class of distributions. 1 ) K-
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1. INTRODUCTION

In [23], Valiant proposed a precise framework to capture the notion of what we mean by
"learning from examples." The essential idea consists of approximating an unknown "concept"
from a finite number of positive and negative "examples" of the concept. For example, the concept
might be some unknown geometric figure in the plane, and the positive and negative examples are
points inside and outside the figure, respectively. The goal is to approximate the figure from a
finite number of such points. The examples are assumed to be drawn according to some probability
distribution. The same distribution is used to evaluate how well a concept is learned. However, no
assumptions are made about which particular distribution is used. That is, learning is required to
take place for every distribution.

Valiant's seminal paper [23] has led to a large amount of work analyzing and extending the
formal learning framework which was originally proposed. A fundamental paper was written by
Blumer et al. [6] which gave a characterization of learnability for the distribution-free framework
in terms of a combinatorial parameter which measures the "size" of a concept class. Benedek and
Itai [4] studied a variation of Valiant's learning framework in which the examples are assumed to
be drawn from a fixed and known distribution. In this case, a characterization of learnability was
given in terms of a different measure of the size of a concept class.

In Section 2, we give some definitions, a precise description of the learning framework, and
some previous results from [6] and [4]. The definitions and notation used are essentially those from
[6], which are a slight variation of those originally given in [23]. The major result of [6] states
that a concept class is learnable for every distribution iff it has finite Vapnik-Chervonenkis (VC)
dimension. An analogous result of [4] characterizes learnability for a fixed distribution. We point out
that this characterization is identical to that of finite metric entropy, which has been studied in other
contexts. The results characterizing learnability suggest that there may be relationships between
the VC dimension of a concept class and its metric entropy with respect to various distributions.
Some such relationships, in addition to those investigated in [4], are discussed in Section 3. We state
an earlier result from [8] and prove a new result, both of which offer some improvements on different
results of [4]. In Section 4, we consider learnability for a class of distributions, which is a natural
extension of learnability for a fixed distribution. Benedek and Itai [4] posed the characterization of
learnability in this case as an open problem. They conjectured that a concept class is learnable with
respect to a class of distributions iff the metric entropy of the concept class with respect to each
distribution is uniformly bounded over the class of distributions. We prove some partial results
for this problem. Although the results we prove are far from verifying the conjecture in general,
they are consistent with it. Furthermore, they provide some indication of conditions when power



is gained by requiring learnability only for a class distributions rather than for all distributions.
Finally, in Section 5, we briefly summarize and mention some related work that has been done on
Valiant's learning framework.
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2. DEFINITIONS AND PREVIOUS RESULTS CHARACTERIZING
LEARNABILITY

In this section, we describe the formal model of learning introduced by Valiant [23] (learnability
for all distributions) and a variant (learnability for a fixed distribution). We also state previous
results characterizing learnability in these cases. The result of Blumer et al. [6] characterizes
learnability for all distributions in terms of a quantity known as the VC dimension. The result of
Benedek and Itai [4] characterizes learnability for a fixed distribution in terms of a quantity that
is essentially metric entropy.

Informally, Valiant's learning framework can be described as follows. The learner wishes to
learn a concept unknown to him. The teacher provides the learner with random positive and
negative examples of the concept drawn according to some probability distribution. From a finite
set of examples, the learner outputs a hypothesis which is his current estimate of the concept. The
error of the estimate is taken as the probability that the hypothesis will incorrectly classify the next
randomly chosen example. The learner cannot be expected to exactly identify the concept since
only a finite number of examples are seen. Also, since the examples are randomly chosen, there is
some chance that the hypothesis will be very far off (due to poor examples). Hence, the learner
is only required to closely approximate the concept with sufficiently high probability from some
finite number of examples. Furthermore, the number of examples required for a given accuracy and
confidence should be independent of the distribution from which the examples are drawn. Below,
we will describe this framework precisely, following closely the notation of [6].

Let X be a set which is assumed to be fixed and known. X is sometimes called the instance
space. Typically, X is taken to be either R' (especially R 2) or the set of binary n-vectors. A concept
will refer to a subset of X, and a collection of concepts C C 2X will be called a concept class. An
element x E X will be called a sample, and a pair (x, a) with x E X and a E {0, 1} will be called a
labeled sample. Likewise, Y = (x,... , xm) E Xm is called an m-sample, and a labeled m-sample is an
m-tuple ((xi,al),..., (m, am)) where ai = aj if xi = xj. For Y = (xl,... ,xm) E Xm and c E C,

the labeled m-sample of c generated by Y is given by sam,(Y) = ((xi, I(xl)),. .. ,(Xm,Ic(xm)))
where It(.) is the indicator function for the set c. The sample space of C is denoted by Sc and
consists of all labeled m-samples for all c E C, all Y E Xm , and all m > 1.

Let H be a collection of subsets of X. H is called the hypothesis class, and the elements
of H are called hypotheses. Let FCH be the set of all functions f : Se - H. A function f E
FCH is called consistent if it always produces a hypothesis which agrees with the samples, i.e.
whenever h = f((xi, al),..., (xm, am)) we have Ih(xi) = ai for i = 1,..., m. Given a probability

distribution P on X, the error of f with respect to P for a concept c E C and sample Y is defined
as errorfx,p(Y) = P(cAh) where h = f(samc(Y)) and cAh denotes the symmetric difference of the
sets c and h. Finally, in the definition of learnability to be given below, the samples used in forming
a hypothesis will be drawn from X independently according to the same probability measure P.
Hence, an m-sample will be drawn from Xm according to the product measure Pm.
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We can now state the following definition of learnability for every distribution, which is the ver-
sion from Blumer et al. [6] of Valiant's [23] original definition (without restrictions on computational
complexity - see below).

Definition 1 (Learnability for Every Distribution) The pair (C, H) is learnable if there ex-
ists a function f E FCH such that for every c, 6 > 0 there is a 0 < m < 0c such that for every
probability measure P and every c E C, if T E X ' is chosen at random according to P m then the
probability that errorf,c,p(T) < e is greater than 1 - 6.

Several comments concerning this definition are in order. First, learnability depends on both
the concept class C and the hypothesis class H, which is why we defined learnability in terms of
the pair (C, H). However, in the literature the case H D C is often considered, in which case, for
convenience, we may speak of learnability of C in place of (C, C). Second, the sample size m is
clearly a function of f and 6 but a fixed m = m(c, 6) must work uniformly for every distribution
P and concept c E C. Because of this, the term distribution-free learning is often used to describe
this learning framework. Finally, f can be thought of as an accuracy parameter while 6 can be
thought of as a confidence parameter. The definition requires that the learning algorithm f output
a hypothesis that with high probability (greater than 1 - 6) is approximately correct (to within E).
Angluin and Laird [2] used the term probably approximately correct (PAC) learning to describe this
definition.

A somewhat more general and useful definition of learnability was actually used by Valiant
in [23] and later by others. This definition incorporates both a notion of the size or complexity
of concepts and the central idea that the learning algorithm (i.e., the function which produces a
hypothesis from labeled samples) should have polynomial complexity in the various parameters.
Other variations of this definition, such as seeing positive examples only, or having the choice of
positive or negative examples, have also been considered. Some equivalences among the various
learnability definitions were shown in [10]. In this report, we will not consider these variations.
Also, we will be considering the case that H D C throughout, so that we will simply speak of the
learnability of C rather than learnability of (C, H).

A fundamental result of Blumer et al. [61 relates learnability for every distribution to the
Vapnik-Chervonenkis (VC) dimension of the concept class to be learned. The notion of VC dimen-
sion wp~s introduced in [25) and has been studied and used in [8,26,11]. Many interesting concept
classes have been shown to have finite VC dimension.
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Definition 2 (Vapnik-Chervonenkis Dimension) Let C C 2X . For any finite set S C X, let
flc(S) = {Snc : c E C}. S is said to be shattered by C if flc(S) = 2S. The Vapnik-Chervonenkis
dimension of C is defined to be the largest integer d for which there exists a set S C X of cardinality
d such that S is shattered by C. If no such largest integer exists then the VC dimension of C is
infinite.

A concept class C will be called trivial if C contains only one concept or two disjoint concepts.
In [6], a definition was also given for what they called a well-behaved concept class, which involves
the measurability of certain sets used in the proof of their theorem. We will not concern ourselves
with the definition here. The following theorem is stated exactly from [6] and was their main result.

Theorem 1 For any nontrivial, well-behaved concept class C, the following are equivalent:

(i) The VC dimension of C is finite.

(ii) C is learnable.

(iii) If d is the VC dimension of C then

(a) for sample size greater than max(4 log 2, 8 log §T), any
consistent function f E FCH is a learning algorithm for
C, and

(b) fore < 1 and sample size less than max(- log ,d(1- 2(,E+

6 - 6))), no function f E FCH where C C H is a learning
algorithm for C.

A definition of learnability similar to that of Definition 1 can be given for the case of a single,
fixed, and known probability measure.

Definition 3 (Learnability for a Fixed Distribution) Let P be a fixed and known probability
measure. The pair (C, H) is said to be learnable with respect to P if there exists a function f E FCH

such that for every c, 6 > 0 there is a 0 < m < oo such that for every c E C, if T E X m is chosen
at random according to P m then the probability that errorf,c,p(Y) < f is greater than 1 - 6.

Conditions for learnability in this case were studied by Benedek and Itai [4]. They introduced
the notion of what they called a "finite cover" for a concept class with respect to a distribution
and were able to show that finite coverability characterizes learnability for a fixed distribution.
It turns out that their definition of finite coverability is identical to the notion of metric entropy,
which has been studied in other literature. Specifically, the measure of error between two concepts
with respect to a distribution is a semi-metric (or pseudo-metric). The notion of finite coverability
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is identical to the notion of finite metric entropy with respect to the semi-metric induced by the
distribution P.

We define metric entropy below, but first show that P induces a semi-metric on the concept
class. Define dp(cl, C2) = P(cl Ac2) for cl, c2 C X and measurable with respect to P. For Cl, C2 E C,
dp(cl, c2) just represents the error between cl and c2 that has been used throughout. In the following
proposition we prove that dp(', .) defines a semi-metric on the set of all subsets of X measurable
with respect to P, and hence defines a semi-metric on the concept class C.

Proposition 1 For any probability measure P, dp(cl,C2) = P(cIAc2) is a semi-metric on the
a-algebra S of subsets of X measurable with respect to P. I.e., for all c1, c2 , c 3 E S

(i) dp(cl, c2) > 0

(ii) dp(cl, c 2 ) = dp(c2 , Cl)

(iii) dp(cl, c3) !5 dp(cl, c2) + dp(c2 , c3)

Proof: (i) is true since P is a probability measure, (ii) is true since c1 Ac 2 = C2Acl, and (iii) follows
from subadditivity and the fact that cIAc 3 _ (clAc 2 ) U (c2 Ac3 ). I

Note that dp(., .) is only a semi-metric since it does not usually satisfy the requirement of a
metric that dp(cl,c2 ) = 0 iff Cl = c2. That is, cl and c2 may be unequal but may differ on a set of
measure zero with respect to P, so that dp(cl, c2) = 0.

We now define metric entropy.

Definition 4 (Metric Entropy) Let (Y, p) be a metric space. Define N(L) =_ N(E, Y, p) to be the
smallest integer n such that there exists Y1... . , yn E Y with Y = U!=lB,(yi) where B,(yi) is the
open ball of radius e centered at yi. If no such n exists, then N(f, Y, p) = co. The metric entropy
of Y (often called the e-entropy) is defined to be log 2 N(f).

N(f) represents the smallest number of balls of radius c which are required to cover Y. For
another interpretation, suppose we wish to approximate Y by a finite set of points so that every
element of Y is within f of at least one member of the finite set. Then N(C) is the smallest number
of points possible in such a finite approximation of Y. The notion of metric entropy for various
metric spaces has been studied and used by a number of authors (e.g., see [8,9,12,16,17,22]).

The notion of metric entropy can still be used even if p is only a semi-metric rather than
a metric.For convenience, if P is a distribution we will use the notation N(c, C, P) (instead of
N(e, C, dp)), and we will speak of the metric entropy of C with respect to P, with the understand-
ing that the semi-metric being used is dp(-, .). Benedek and Itai [4] proved that a concept class C is
learnable for a fixed distribution P iff C has finite metric entropy with respect to P. We state their
results formally in the following theorem, which we have written in a form analogous to Theorem 1.
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Theorem 2 Let C be a concept class and P be a fixed and known probability measure. The following
are equivalent:

(i) The metric entropy of C with respect to P is finite for all f > 0.

(ii) C is learnable with respect to P.

(iii) If N(c) = N(e, C, P) is the size of a minimal c-approximation
of C with respect to P and C ('12) = {Y,... ,YN(,/2)} is an 1 -approximation
to C then

(a) for sample size greater than (32/c) ln(N(c/2)/6)
any function f : SC -* C (,12) which minimizes the number
of disagreements on the samples is a learning algorithm for
C, and

(b) for sample size less than log2(1 - 6)N(2e)] no function
f E FCH is a learning algorithm for C.

Note that in condition (iii)(a), only functions whose range was a finite 1-approximat;on to
C were considered. As noted in [4], a function that simply returns some concept consistent with
the samples does not necessarily learn. In fact, they claim that they found examples where for
every finite sample there are concepts c-far from the target concept (even with c = 1) that are still
consistent with the samples. The following is a simple example which substantiates their claim.
Let X = [0, 1], P be the uniform distribution on X, and C be the concept class containing all finite
sets of points and the entire unit interval. That is,

C = if{xl,..., x,} : 1 < r < oo and xi E [0, 1], i =1.,r} U 1[0, 1]}

If the target concept is [0, 1] then for every finite sample there are many concepts that are consistent
with the sample but are c-far (with c = 1) from [0, 1). Namely, any finite set of points which contains
the points of the sample is a concept with this property.
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3. RELATIONSHIPS BETWEEN METRIC ENTROPY AND THE
VAPNIK-CHERVONENKIS DIMENSION

In the previous section, we stated a result from [6] which showed that the VC dimension
of a concept class characterizes learnability for every distribution. A similar result from [4] was
stated which showed that the metric entropy of a concept class characterizes learnability for a fixed
distribution. These two results naturally suggest that there may be some relationships between the
VC dimension of a concept class and its metric entropy with respect to various distributions. This
is indeed the case. In this section, we discuss some relationships explored by [4], prove a further
result, and state an earlier result from [8].

The following theorem was shown in [4], and is stated as it appeared there.

Theorem 3 Let C be a concept class of finite dimension d > 1 and let N(e, C, P) be the size of a
minimum c-cover of C with respect to probability measure P. Then the following relations hold:

(i) There is a distribution P such that [log2 dJ < N(1, C, P).

(ii) If f < - then there is a distribution P such that 2d < N(c, C, P).

(iii) If f < 1 then N(c, C, P) < 1.002 (16d/f) 16d/, for every probability
measure P.

The proofs of these relations are straightforward and were given in [4]. However, some com-
ments on each of these relations are in order.

First, a statement more general than (ii) can be made which does not depend on the VC
dimension of C. Specifically, let xl, . . , x,, E X be distinct points and let Cl,. . . , CE C be
concepts whose intersection with {xl,..., xzj gives rise to distinct subsets, i.e., cj n {zl,. . . , x,. } #
tin{ x,..., x,} for i 0 j. Note that we must necessarily have k < 21. If we take P to be the uniform
distribution on {xl,..., x,} then we obtain N(e, C, P) > k for e < -. This reduces to (ii) if C has
VC dimension d and Cl,..., C2d are concepts which shatter the set of points {Xl, Xd}. However,
our statement is more general since, regardless of the VC dimension of C, it may be possible to find
n concepts which give rise to n distinct subsets of {xl,... ,xn} so that N(c, C, P) > n for E < -.1

The result in (iii) was obtained somewhat indirectly in [4] by using upper and lower bounds
for the number of samples required for learning (from [6] and [4] respectively). The following result
along the lines of (iii) was shown in [8]. Note that the bound does not appear exactly as in [8] since
the definition of VC dimension used in [8] corresponds to d + 1.

Proposition 2 If C is a concept class with VC dimension d, then there is a constant K = K(d)
such that for 0 < e < we have N(c, C, P) < K(d)c-(d+l) I In cld+ l for every probability measure P.

For a fixed concept class (and hence fixed d), this bound provides a much tighter bound on
N(c, C, P) as a function of c than the bound of (iii) (namely, polynomial vs exponential in
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Now, regarding relation (i), we note that if the VC dimension of C is infinite then we can find
a sequence of distributions Pn for n = 1, 2,... such that limn, N(l, C, Pn) = Oc. Relation (i) is
proved by considering the uniform distribution on a finite set of d points shattered by C. If the
VC dimension of C is infinite, our comment follows by taking P' to be the uniform distribution
over n points shattered by C and using (the proof of) relation (i) for each n = 1, 2,.... In general,
for a concept class of infinite VC dimension, we may not necessarily be able to find a particular
distribution P for which N(e, C, P) = oo, but will only be able to approach infinite metric entropy by
a sequence of distributions. However, in some cases we can achieve infinite metric entropy as shown
by the following example. Let X = [0, 1] and let C be the set of all Borel sets. Then taking P to be
the uniform distribution, we have N( l, C, P) = oo since the infinite collection of sets corresponding
to the Haar basis functions (i.e., c, = {x E [0, 1]: the nth digit in the binary expansion of x is 1})
are pairwise a distance 1 apart with respect to P.

Finally, we prove a result which has a larger range of applicability than (ii) and gives a stronger
dependence on d than (i) for c < 1. Although the bound of (ii) is exponential in d, it is valid only
for f < V, so that the range of applicability goes to zero as d -* oo. On the other hand, (i) is valid
for a fixed e independent if d (namely f = 1) but gives only logarithmic dependence on d. The
following bound gives exponential dependence on d for a fixed range of applicability (e <

Proposition 3 If C is a concept class of finite dimension d > 1 then there is a probability measure
P such that

e 2 - ) d < N(c, C, P)

for all e < 1e

Proof: Let {X,... , Xdj} be a set of d points that is shattered by C, and let p be the uniform
distribution on {xl,..., Xd}, i.e., P(xi) = 1 for 1,..., d. For this distribution, the only relevant
property of a concept c is the set of xi which are contained in c. Hence, we can represent c by a d
bit binary string with a one in position i indicating that xi E c, and we can identify the concept
class C with the set of all d bit binary strings.

If we can find n concepts that are pairwise more than 2f apart, then N(e, C, P) _> n since each
of the non-overlapping c balls around these n concepts must contain a member of an E-cover (see
Lemma 3 of [4]). Given two concepts Ci, c2 represented as binary strings, dp(cl, c2) = k where k is
the number of bits on which cl and c2 differ, and so dp(cl, c2) _< 2C iffc2 differs from cl on k < 2Ed
bits. The number of binary strings that differ on k bits from a given string is (d). Therefore, the
number of concepts that are a distance less than or equal to 2E from a given concept is Y-O<k<2,d (d).

Since the total number of concepts is 2d, we can find at least

O<k2Ed

concepts that are more than 2e apart, so that

N(e, C, P) > 2 d, O l<2d (
O<k<2ed
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Now, Dudley [81 states the Chernoff-Okamoto inequality

E (k)Pk_. P)n-k < -(p-)I/f2np(1-p))

for p _ 4 and m < np, which can be obtained from a more general inequality (for sums of bounded
random variables) of Hoeffding [131. Taking n = d, p = 4, and m = 2Ed we obtain

(d)I d -d2(12e)2 d

O<k<2ed

for < 1. Using this in our earlier bound on N(E, C, P), we get

N(,, C, P) e2(-2c) 2d

for c < 1 which is the desired inequality. *
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4. PARTIAL RESULTS ON LEARNABILITY FOR A CLASS OF
DISTRIBUTIONS

In this section, we prove some partial results regarding learnability for a class of distributions.
The definition of learnability in this case is completely analogous to the definitions given earlier,
but for completeness we state it formally.

Definition 5 (Learnability for a Class of Distributions) Let P be a fixed and known collec-
tion of probability measures. The pair (C, H) is said to be learnable with respect to P if there
exists a function f E FCH such that for every e, 6 > 0 there is a 0 < m < cc such that for every
probability measure P E P and every c E C, if'1 E X m is chosen at random according to P m then
the probability that errorf,c,,p() < e is greater than 1 - 6.

Benedek and Itai [4] posed the problem of characterizing learnability for a class of distributions
as an open problem, and they made the following conjecture.

Conjecture I A concept class C is learnable with respect to a class of distributions P iff for every
S>0,

N(f, C, P) = sup N(c, C, P) < 00
PEP

The notation defined in the statement of the conjecture will be used throughout. Namely, if P is
any class of distributions, then N(i, C, P) is defined by N(E, C, P) = suppcp N(f, C, P).

For a single distribution , the conjecture reduces immediately to the known result of [41
(stated in Section 2). For every distribution, the results of Section 3 imply that the condition
sup~at p N(c, C, P) < o Vf > 0 is equivalent to the condition that C have finite VC dimension.
Hence, the conjecture in this case reduces to the known result of [6] (stated in Section 2. As pointed
out in [4], the case where P is finite is similar to the case of a single distribution, and the case
where P contains all discrete distributions is similar to the case of all distributions. The result for
all discrete distributions follows again from Section 3 since SUPdiscrete p N(f, C, P) < 00 VE > 0 iff
the VC dimension of C is finite.

We now prove some results for more general classes of distributions. Although our results are
far from verifying the conjecture completely, the partial results we obtain are consistent with it.
They also provide some indication of when the set of learnable concept classes is or is not enlarged
by requiring learnability for only a class of distributions.

One natural extension to considering a single distribution P0 is to consider the class of all
distributions sufficiently close to P0. One measure of proximity of distributions is the total variation
defined as follows. First, we assume that we are working with some fixed a-algebra S of X. Let
?* denote the set of all probability measures defined on S. For P1, P2 E P*, the total variation
between P and P2 is defined as

liP 1 - P211 = sup IPI(A) - P2(A)f
AES
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For a given distribution P0 and 0 < A < 1 define

P,,(Po, A) = {P E P* : lIP - Poll S A}

?1 (P, A) represents all probability measures which are within A of P0 in total variation. For A = 0,
P,(Po, 0) contains only the distribution Po, and for A = 1, P,(Po, 1) contains all distributions.

Another possibility for generating a class of distributions from P0 utilizes the property that a
convex combination of two probability measures is also a probability measure. Specifically, if P1

and P2 are probability measures then AP, + (1 - A)P2 is also a probability measure for 0 < A < 1.
One interpretation of this convex combination is that with probability A a point is drawn according
to '1, and with probability 1 - A the point is drawn according to P2. Given a distribution P0 and
0 < A < 1, define

P't(Po,A) = {(1 - r)P + 7P: 7 A,P E '.}

The distributions in P1 (P0, A) can be thought of as those obtained by using P0 with probability
greater than or equal to 1 - A and using an arbitrary distribution otherwise. Note that, as with
P.(Po, A), we have P1(PO,0) = {P} and P1(P, 1) = P*.

Both P,(Po, A) and P,(Po, A) can be thought of as "spheres" of distributions centered at P0.
i.e. all distributions sufficiently "close" to Po in an appropriate sense. The following proposition
verifies the conjecture for P1(Po, A) and P,(P, A) and shows that a concept class is learnable for
P1 (Po, A) or P,(Po, A) with A > 0 iff it is learnable for all distributions.

Proposition 4 Let C be a concept class, P a fixed distribution, and 0 < A < 1. Then the following
are equivalent:

(i) N(e,C, PI(Po, A)) < co for all c > 0

(ii) C has finite VC dimension

(iii) C is learnable for P1(Po, A)

Furthermore, P1 (Po, A) g P,(Po, A) so that the above are equivalent for P,, (P, A) as well.

Proof: (i) =* (ii) This follows from the results of [6] (what we have called Theorem 1). Namely,
(ii) implies learnability for all distributions which implies learnability for P1(P, A) C P*.

(il) =:. (i) If N(E, C, P1(Po, A)) = oo for some c > 0, then for every M < 00 there exists
PM E P1(Po, A) such that N(e, C, PM) > M. But then by the results of [41 (what we have called
Theorem 2), more than log 2 N(e,C, PM) > og 2(1 - 6)M samples are required to learn for PM.
Since M is arbitrary, letting M - co contradicts the fact that C is learnable for P1(P, A). Thus,
N(c, C,P P(P, A)) < 0o for all e > 0.
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(i) =: (ii) For every P E P*, let Q = (1- A)Po + AP E P1'(Po, A). If c1,c2 C X are any
measurable sets, then

dQ(Cl,c 2 ) = Q(cIAc2 ) = (1 - A)Po(cIAc 2 ) + AP(clAc 2 )

AP(cAc2) = Adp(clAC2 )

Therefore, N(A, C, Q) _ N(c, C, P) and so

N(c, C, P *) = sup N(c, C, P) < sup N(Ag, C, (1 - A)P + AP)
PEP* PEP'

= sup N(Ac, C, Q) < o
QEY'P (Po,X)

Hence, from the results of Section 3, C has finite VC dimension.

Finally, to show P, (P0 , A) C P,, (P, A), let Q E P1 (P, A). Then Q = (1 - )Po + 77P for some
P E P and q < A. For every A E S, we have

IQ(A) - Po(A)I = 1(1 - 71)Po(A) + iTP(A) - Po(A)J

= ifP(A) - Po(A) _ 77 <

Therefore, IIQ - P11 !5 A so that Q E P, (Po, A). I

The following result shows that learnability of a concept class is retained under finite unions
of distribution classes. That is, if a concept class C is learnable for a finite number of sets of
distributions P1 ..... , P, then it is learnable with respect to their union P = U!= 1 Pi. This is to be
expected if the conjecture is true since N(e, C, 7) = maxi N(c, C, Pi) < c iff N(,E, C, P ,) < 00 for
i = 1,...,n.

Proposition 5 Let C be a concept class, and let 71',..., ',, be n sets of distributions. If C is
learnable with respect to Pi for i = 1, ... n then C is learnable with respect U!11 Pi.

Proof: Let fi be an algorithm which learns C with respect to ri, and let mi(, 6) be the number of
samples required by fi to learn with accuracy e and confidence 6. Define an algorithm f as follows.
Ask for e6 32 n

m(,6)= max mi( , In+---l-
I<i< 2 2 7 6/2

samples. Using the first maxirnm( , r ) samples, form hypotheses hi..., h,, using algorithms
1, ... , ,~ respectively. Then, using the last 2 In ? samples, let f output the hypothesis h,

which is inconsistent with the smallest number of this second group of samples. We claim that f
is a learning algorithm for C with respect to U, 1=IPi.

Let P E U!' Pi, and let c E C. Then P E Ph for some k. Since the fi are learning algorithms
with respect to the A,, at least one hi (namely hk) is within ' of c with probability (with respect
to product measures of P) greater than 1 - 6. Given that hi is within ' of c for some i, the proof
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of Lemma 4 from [4] shows that the most consistent hypothesis (on the second group of samples)
is within e of c with probability greater than 1 - §. Therefore, if A denotes the event that at least

one h, is within ' of c then

Pr{dp(f(sam,(T)),c) < E} = Pr{dp(f(sam,(T)),c) < c IA} • Pr{A}

> 0i - - b) >
2 2

Thus, f is a learning algorithm for C with respect to UL1 Pi using m(E, 6) samples. I

Note that the above result is not true in general for an infinite number of classes of distributions
since the sample complexity of the corresponding algorithms may be unbounded (i.e., we may have
supi N(E, C, Pi) = oo). However, even if N(c, C, Pi) is uniformly bounded the proof above does not
go through since the application of Lemma 4 from (4] requires finitely many hypotheses. This is
essentially the difficulty encountered in attempting to prove the conjecture directly.

For a finite number of distributions P1 ,. . ., Pn, define their convex hull, denoted by conv(Pi,... 7Pn),

as the set of distributions that can be written as a convex combination of P1,... , Pn. That is,

conv(P,...,Pn) = {AiP 1 +.." + AnP, : 0 < Ai 1 and Al + + An = 1}

We now prove the following proposition.

Proposition 6 Let C be a concept class and let PI,..., P be probability measures. The following
are equivalent:

(i) C is learnable with respect to P for each i = 1,..., n.

(ii) N(e, C, cony(P1,..., Fn)) < oo for all c > 0.

(iii) C is learnable with respect to conv(Pi,..., F,).

Proof: (iii) =:, (i) This is immediate.

(i) = (ii) Since C is learnable with respect to P for each i, by Theorem 2 we have N(c, C, P) <
oo for all e > 0 and i = 1,...,n. Let Ni(c) = N(E,C,Pi) and let ci,1,... Ici,N,(e/2) be an 1-
approximation of C with respect to dp,. For each i = 1,. .. , n, let Ci = {c E C: dp, (c, cid) : }

for j = ,...,Ni(!). We have C = ,, I  c, ijforalli n. Let

..... = A_
i=1

for 1 < k, Ni(e), i =1,..., n. Clearly,

C= U Ck,....,k
all (l,...,kn)
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Also, by construction the 'diameter' of each Ck.,...,k.' with respect to dp, is less than or equal to c
forall i= 1,...,n, i.e. foreach i = 1,...,n we have

sup dp (cl, c2) _<
C1,C2ECk ,.-,kn

Hence, if we define a metric p(., .) by

p(ci,c 2) = max dp(cl,c2)
l<i<n

then N(c, C, p) < Ij' I Ni(i) < oo since we can form an c-approximation of C with respect to p by
simply taking any point from each Cki,....k., that is nonempty.

Now, if Q E conv(P1,... , Pn) then Q = E-7=1 AiPi for some 0 < Ai < 1 with E !, = 1. For
any measurable Cl, c2 g X, we have

12

dQ(Cl,C2) = -Aidp,(cl,c2)
i=1

( Ai ) max dp,(cl, C2) = p(cl,c2)-- l<i<n

so that N(e, C, Q) 5 N(e, C, p). Thus,
n

N (,C, conv (P,...,P)) = sup N(c,C,Q) _ JJNi(;) < oc
QEcO2v(P . .., ) =1

(ii) =. (iii) If N(c, C, conv(PI,..., P,,)) < cc for all E > 0, then, in particular, N(f, C, P) < 0c
for i = 1,... , n and E > 0. Therefore, we can employ the construction used above in proving that
(i) implies (ii) to get a finite !-approximation of C uniformly for all Q E conv(P1,..., Pn). As
shown above, such an approximation can be found with less than or equal to fl1= Ni(f) elements
where Ni(1) = N(1, C, P). Thus, using the proof of Lemma 4 from 14], the algorithm which takes

(In } + ,=1 In Ni( )) samples and outputs an element of the i-approximation with the smallest

number of inconsistent samples is a learning algorithm for C with respect to conv(Pi,..., 1'12). *

The above proposition verifies the conjecture for classes of distributions which are "convex
polyhedra with finitely many sides" in the space of all distributions. In fact, combined with the
previous proposition, the conjecture is verified for all finite unions of such polyhedra.

17



5. SUMMARY

It was first pointed out that the condition for learnability with respect to a fixed distribution
obtained in [4] is identical to the notion of finite metric entropy. Metric entropy has been studied
elsewhere, and perhaps results from that literature may have applications to concept learning. In
considering relationships between the VC dimension of a concept class and its metric entropy, we
extended a result of [4] and stated an earlier result from [8]. Finally, we proved some partial
results concerning learnability with respect to a class of distributions. These results are consistent
with a conjecture in [4]. Specifically, it was shown that the conjecture holds for any "sphere"
of distributions and for any set of distributions which is a finite union of "convex polyhedra with
finitely many sides." In addition to verifying the conjecture in these cases, the results indicate some
limitations of attempting to enlarge the set of learnable concept classes by requiring learnability
only for a class of distributions as opposed to all distributions.

In closing, we briefly mention some other work that has been done on Valiant's learning
framework. (Note that this is not intended to be a complete survey.) A considerable amount of
work has been done on studying specific learnable concept classes taking into consideration issues of
computational difficulty. In fact, much of [23] focused on certain special classes of Boolean functions
(see also [15,20,24]). Several papers have dealt with the interesting issue of noise in the samples
[2,14,21,24]. A result concerning noisy samples was also given in [41 for the case of learnability with
respect to a fixed distribution. Another interesting idea involves the introduction of a measure of the
complexity of concepts, and allowing the number of samples to depend on this complexity This has
been studied in [6,7,5,10,18]. We stated our definitions of learnability in terms of both the concept
class C and the hypothesis class H, but assumed throughout that H D C. Considerations in the
more general case have been discussed in [1,3,18]. The use of more powerful oracles (i.e., protocols
which allow the learner to get information other than just random samples) have been considered
in [1,23] Finally, [19] has considered learnability of continuous valued functions (as opposed to the
usual binary valued functions).
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